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The velocity field in the wake behind an ellipsoid of revolution is numerically 
investigated on the basis of a second-order differential model as a function of 
the energetic and structural state of the external isotropic turbulence. 

The most important characteristic of a turbulent velocity field is the turbulent Reynolds 
number R% = q%/v, qa = ui,ui, ' % = /5~q=/~u, eu = v(~u,i/~Xk)2 The quantity R% varies in a 
broad range of values in the majority of turbulent flows. The simplest example of such a 
situation is the degeneration of homogeneous isotropic turbulence behind a cascade. The 
energy damping rate of the fluctuating motion here depends in a substantial manner on the 
quantity R%. Indeed, in the initial developed degeneration domain where R% >> 1 a law with 
exponent n = --1.3 is valid [i] , while the final stage (R~ < I) is characterized by the ex- 
ponent n = --2.5 [2]. 

As a rule, numerical computations of turbulent inhomogeneous velocity fields are con- 
ducted at this time on the basis of asymptotic models (R% >> I) u'iu' j -- e u with a knovm set 
[3] of empirical constants. It is shown in [4-7] that the empirical constants must be re- 
placed by functions of the turbulent Reynolds number in the analysis of turbulence parameters 
in the domain of continuous change in R% from large values to small, corresponding to the 
final stage of degeneration. 

SECOND-ORDER DIFFERENTIAL MODEL 

The closed system of average equations describing the turbulent velocitK field of a shear 
flow consists of equations for the mean velocities Ui, the Reynolds stresses u'iu' j and the 
dissipation functions Cu: 
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The model takes account of the dependence of the empirical parameters on the turbulent 

Reynolds number and does not contradict the exact regularities of the dynamics of a homogene- 
ous isotropic field in the as}~ptotic cases R% + ~ [8] and R% + 0 [9]. In the domain of 
moderate values of R% the form taken for the function du(R %) is hypothetical in nature. The 
functions Fu, bu, ~u, Yu are constructed with the results of direct numerical modeling in the 
domain of moderate numbers R% [i0, II], and experimental data on the dynamics of homogeneous 
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turbulence with constant shear [12] taken into account. Values of the empirical constants ~ = 
0.0375 and B = 0.075 are determined by numerical optimization from the condition of best 
agreement of the results of computation and experiment for different free flows. 

FORMULATION OF THE PROBLEM 

The stationary turbulent velocity field in the wake behind an axisymmetric body is 
modeled by the system of equations (i) written in a cylindrical coordinate system in the 
boundary-layer approximation. Eliminated from consideration here is the domain directly be- 
hind the body for which the transport equations are not suitable in the boundary-layer ap- 
proximation. 

Using the ellipsoid diameter d and the free stream velocity U as characteristic param- 
eters and introducing the notation x = xx/d, r = x2/d, u = (Ua -- U~)/U~, v = Ua/U~, Rij = 
u'iu'j/U~ 2, E = Rii, R = R~=/r, D u = eud/U~, it is easy to write the system of equations in 

dimensionless form 
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The radial component of the mean velocity vanishes on the axis of symmetry, while the 
remaining functions evidently have zero derivatives. The quantities E(x~ 6) and Du(x , 6) are 
determined by the energetic and structural state of the free-stream turbulence, assumed homo- 
geneous and isotropic, on the outer boundary 6; therefore, R=a(x, 6) = */3E(x, 6), u(x, 6) = 
R(x, 6) = 0. The boundary 6 itself is found from the condition of a smooth connection between 

the computed characteristics of the wake and the background. 

Six possible background states are considered whose parameters x = 3 and r > 6 are rep- 
resented in Table i. In the case of degenerating external turbulence the boundary conditions 
for x > 3 are determined by the solution of the Cauchy problem for the system 

_ _  De 
dEb _ 2D~b; dD~'b -- F~ . @_ . (3) 
dx dx E b 

I f  t he  backg round  i s  s t a t i o n a r y ,  t h e n  the  c o n d i t i o n s  Du(x ,  6) = Dub and E(x ,  6) = E b c o n t r a -  
d i c t  sy s t e m ( 1 ) .  i n  t h i s  c a s e  t he  r i g h t  s i d e s  o f  t h e  e q u a t i o n s  f o r  R==, E, and Du a r e  s u p -  
p l e m e n t e d ,  r e s p e c t i v e l y ,  by t he  s o u r c e  t e rms  2Dub/3,  2DUub , FuDubDu/E t h a t  model  t h e  g e n e r a t o r  
of the background turbulent fluctuations and assure stationarity conditions (independence 
from x) for the external turbulence. 

The background intensity in all the versions under consideration does not exceed 0.05% 
of the turbulence energy on the axis of symmetry in the section x = 3, and, therefore, its 
influence on the initial conditions can be neglected. 

The first version characterizes the external flow with rapidly degenerating turbulence 
whose intensity is negligible compared with the turbulence energy along the axis of symmetry 
at any distance from the ellipsoid, which corresponds to the development of a wake in an un- 
perturbed stream. The five succeeding versions model the influence of the energetic, struc- 
tural, and dynamic states of the external, isotropic turbulence on the development of the re- 

mote axisymmetric wake. 
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TABLE I. Characteristic External Isotropic 
Turbulence Parameters for x = 3 

No. of External tur- 
version. Eb tb R~b bulence 

I0-6 
I0-6 
I0-~ 
10-6 
I0-6 
81.10 -6 

0,25 
50 

500 
5,56 

50 
5,56 

2,24 
31,62 

316,2 
10,55 
31,62 
31,62 

D egenerating 
>> 

1> 

Sfationary 
>> 

)> 

NUMERICAL INTEGRATION METHOD 

The passage to the system of algebraic equations for the mesh functions is realized by 
using a two-layer six-point Krank--Nicholson scheme that approximates the differential oper- 
ators in the half-integer points with an error o(Ar 2 + Ax2). The linearized system of alge- 
braic equations was solved by the scalar factorization method [13]. The iterative process 
was continued until the maximum difference in the magnitude of the turbulence energy between 
two successive iterations was less than 0.1% of the value of E on the axis of symmetry. 

A uniform spacing along the radius with No = 50 nodes is given in the initial section. 
As we proceed downstream, the number of nodes in the transverse section grows; when it was 
twice the initial value, the spacing Ar was doubled. The longitudinal spacing was given by 
a linear function of the distance behind the ellipsoid Ax = ax + b. The number of nodes 
across the layer and the parameters a = 0.0025 and b = 40 were determined as a result of a 
numerical experiment with a different magnitude of the spacings Ar and Ax in the sections 
3 < x < 102 and 104 < x < i0 m. 

COMPARISON BETWEEN THE RESULTS OF THE COMPUTATION 
AND A LABORATORY EXPERIMENT 

Comparison between the computed and experimental [14] profiles for 5 < x < 70 shows 
their good agreement for a defect in the mean velocity u and the second moments Rij in both 
the transverse and longitudinal coordinates, but indicates a significant discrepancy between 
the results being compared for the dissipation function Du in both quantitative and qualita- 
tive respects. Represented in Fig. 1 in the section x = 40 are the computed profile of D u 
and the experimental [14]: isotropic Duo = 15D12, Dij = ~(Du'i/Dxj) 2 and partially taking 
account of the influence of anisotropy of the profile Duc. The function Duc is calculated on 
the basis of five measured components of the dissipation tensor (D1t, D12, Dr3, D=t, D31) 
while isotropic approximations were used for the remaining components D=2 = DI=/2, D23 = Dz3, 
D3= = Dt=, D~3 = Dr3/2. As follows from Fig. i, as the number of measured components of the 
dissipation tensor increases, the difference between the computation and experiment diminishes 
somewhat. An analogous situation is observed in each of the sections under consideration. 
Let us note that the known experimental results [15-17] on the distribution of D u in the 
transverse section of axisymmetric coflows indicate agreement between the point of maximum D u 
and the axis of symmetry while it is shifted toward the domain of greatest gradient in the 
mean velocity in the computation (Lumley and Khajch--Nouri [18] obtained an analogous result). 
The disagreement noted between the numerical and experimental data on the distribution of Du 
is apparently explained both by the large errors in measuring the total dissipation and by 
the insufficiently adequate modeling of the vorticity generation process in the turbulent 
shear flow. 

WAKE DEVELOPMENT IN AN UNPERTURBED FREE STREAM 

The numerical computation is executed in the section 3 < x < l0 s of longitudinal coordi- 
nate variation where the turbulent Reynolds number calculate~ al~ng the axis of symmetry dim- 
inishes monotonically to the value 0.05. In addition to the parameters evaluatable directly 
because of the solution of the system (i) of differential equations, the scale of turbulence 
is of considerable interest. If the quantities E and D u are known, then the problem of deter- 
mining the characteristic scale of turbulence is easily solvable only in the limit cases 
R% ~ = and R% ~ 0, where the standard scales are, respectively, the scale of the energy-con- 
taining vortices L = 5E/E/D u and the microscale %. Let us introduce the parameter A = L/(I -- 
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Fig. i. Radial profiles of the turbulence kinetic energy dis- 
sipation rate in the section x = 40 (computed I; experimental 
2: 2) Duo, and 3) Duc). 

Fig. 2. Dependence of the power-law exponents on the longi- 
tudinal coordinate: I) nD; 2) hE; 3) nu; 4) nA; 5) n~; 6) nL. 

du) into the analysis. It is easy to see that in the domain of strong turbulence where 
d u + 0, the quantities L and A agree. In the case R k § 0, the function du is proportional to 
RX; consequently, the scales A and X = L/Rx are also proportionate in the weak turbulence do- 

main. Qualitatively, the dependence of A on R X is in agreement with the dependence of the in- 
r ~2 

tegral scale A =q-2fu~ui($)~kd$ on the turbulent Reynolds number. Therefore, the scale A can 
0 

be used as a characteristic quantity for arbitrary values of the number R X. The evolution of 
each of the computed turbulent wake characteristics along the axis of symmetry was approxi- 
mated by the power law dependences: u(x, 0) = Au(x + xo) -nu, E(x, 0) = AE(X + xo) -uE, L(x, 0) = 
AL(X + xo) nL, etc. (the dependence of the exponent on the longitudinal coordinate is evidently 
a necessary condition for self-similarity). The magnitude of the radius on which the energy 
E(6 E) is one-quarter of its value on the axis of symmetry was used as the geometric parameter 
of the width of the wake. 

Analysis of the computation results permits noticing a number of features in the develop- 
ment of an axisymmetric wake in an unperturbed stream. 

!. As follows from Fig. 2, two self-similarity zones can be extracted during degenera- 
tion of an axisymmetric wake: the near, corresponding to the strong turbulence domain and 
governed by large values of RX, and the far which occurs for RX < i. 

2. In the far self-similarity zone, the "weak" turbulence does not influence the defect 
in the mean velocity (Fig. 2)~ which degenerates according to the law x -~ as in the laminar 
flow case. Because of the insignificant average shear the fluctuating motion energy is not 
generated here while the total effect of the diffusion and dissipation assures its rapid at- 
tenuation with exponent nE = 3.5. The width of the wake dE or 5 u (governed by the defect in 
the mean velocity) and the scales A and X are mutually proportional and grow with the expon- 
ent n = 0.5. The scale of the energy-containing vortices here decreases as x -~ remaining 
less than X and losing the physical meaning of a characteristic length scale. Therefore, far 
self-similarity is characterized by two velocity scales (u and /E) and one length scale %. 
Let us note that the results of a computation on the evolution of the far wake are in complete 
agreement with the Phillips analytical laws [19]. (The magnitude of the exponents in the 
Phillips asymptotic power laws is noted by the numbers in Fig. 2.) 

3. The turbulent velocity field in the near self-similar domain is characterized by one 
velocity and length scale (~fE and L). 

4. The near and far self-similar zones differ not only by the magnitude of the damping 
exponent but also of the self-similar profile shapes, as follows from Fig. 3. 

5. The diminution in the value of RX downstream influences the deviation of the damping 
rate of the characteristics being computed from the self-similar strong turbulence laws to a 
different degree. ~i]e the exponent nu remains practically constant down to RX = i0, the 
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Fig. 3. Turbulent energy (dashed line) and tangential stress (solid line) dis- 
tributions across the wake: l) x = I00; 2) 106 . 

Fig. 4. Damping of turbulence kinetic energy along the wake axis of symmetry 
(solid lines) and in the free stream (dashes): 2, 3) version number. 

Fig. 5. Influence of the external stationary turbulence on the scale and turb- 
ulence energy evolution along the wake axis of symmetry: I) E,; 2) L~/Lb; 3) 
ns/Lb; 4) E~; 5) Es; 6) E~. 

the quantity nL diminishes noticeably starting with R% = 30. The ratio L/% = R% here de- 
creases rapid!y~ indicating a diminution in the range of vortex sizes present in the wake 

zone. 

6. The passage of the turbulent velocity field from the strong to the weak state of 
turbulence is a slow non-self-w process. The significant removal of the far self- 
similarity zone from the body explains the reason for the Freymuth lack of success [20] in 
trying to verify the Phillips law experimentally behind a sphere for RI = 2.4. 

WAKE INTERACTION WITH DEGENERATING EXTERNAL TURBULENCE 

For a given isotropic background intensity in the initial section, its rate of degenera- 
tion is determined by the magnitude of the length scale of the energy-containing vortices L. 
In the case of a relatively large-scale and weakly intensive external flow (version 2), its 
turbulence degenerates considerably more slowly than the turbulence energy along the axis of 
wake symmetry. As is seen from Fig. 4, as the longitudinal coordinate increases, equilibra- 
tion of the inertia of turbulence occurs on the wake axis and in the external flow, but a 
certain excess of the intensity E2 above E b for x > 2~ ~ is explained by turbulent energy 
generation in the wake because of the mean velocity gradient. At a sufficiently large dis- 
tance behind the body, wake evolution is governed entirely by the regularities of external 
turbulence (background) degeneration and is, in principle, different from the wake dynamics 
in an unperturbed stream (for the same longitudinal coordinate values). The possibility of 
such a situation must be taken into account in interpreting a laboratory experiment investigat- 
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ing the far wake behind a body in a wind tunnel where degenerating isotropic turbulence is 
realized as a rule. 

An important result in principle is obtained as the background length scale L b increases 
further in the initial section (version 3). Still slower damping than in version 2 occurs 
here for the background turbulence intensity, and the process of interaction between turbu- 
lent flows of different scales~ i.e., by the wake and the free stream, is weakened. In such 
case, a situation occurs when the background and wake intensity are equilibrated at a certain 
distance from the ellipsoid (curves E3 and Ebb) , but the influence of the background has 
still not reached the wake axis where the value of the length scale L remains less than in 
the background. Consequently, the relative fine-scale wake turbulence degenerates at a higher 
rate and its intensity becomes less than in the background. As the longitudinal coordinate 
increases further, the influence of the background reaches the axis of symmetry, the differ- 
ence in the values of the scale L on the wake axis and in the background diminishes, and 
equilibration occurs of the wake and external flow turbulence intensities. 

FEATURES OF WAKE INTERACTION WITH NONDEGENERATE 
EXTERNAL TURBULENCE 

Analysis of the nature of energy damping of the fluctuating motion along the wake axis 
of symmetry for versions 1 and 4-6 (E~ and E~-E6, respectively, Fig. 5) permits extraction of 
a number of features of wake development in a nondegenerate turbulent stream. 

i. As the external flow turbulence intensity increases beyond the dependence on its 
structural state, the distance at which the influence of the background reaches the axis of 
symmetry diminishes. 

2. For identical energetic and different structural states of the external turbulence 
(versions 4 and 5), a diminution in the scale Lb results in magnification of the background 
influence on wake development. As for the degenerating large-scale background, a situation 
can occur for the case of stationary external turbulence with sufficiently large values of L b 
when the intensity of the relatively fine-scale turbulence in the wake during downstream 
motion along the axis of symmetry will take on values less than E b in this section. When the 
influence of the background reaches the axis of symmetry, the turbulence energy on the wake 
axis grows monotonically and tends to its asymptotic value E b. 

3. For an identical dynamic state of the external flow, the relatively fine-scale and 
highly intensive external turbulence (version 6) exerts considerably greater influence on 
wake development than does the weakly intensive and fine-scale background. 

4. The influence of an isotropic turbulent background on the central part of the wake 
is manifest in a rapid diminution of the tangential stress u'zu'=. Consequently, the defect 
in the mean velocity damps out far downstream according to the law x -S, as in the laminar case 
although the value of the turbulent Reynolds number here is still not small. 

NOTATION 

R%, turbulent Reynolds number; q2, doubled kinetic energy of turbulent velocity fluctua- 
tions; ~, Taylor length scale; v, kinematic viscosity coefficient; Eu, dissipation rate; xi, 
Cartesian coordinates; L, Kolmogorov length scale; A, integral scale of turbulence; du, bu, 
Fu, empirical functions of the Reynolds number; a, ~, 6, empirical constants; x, r, dimension- 
less cylindrical coordinates; U~, free stream velocity; d, characteristic diameter of the el- 
lipsoid of revolution; u, defect in the mean velocity; E, doubled dimensionless fluctuation 
energy; Rij , dimensionless second moments; Du, dimensionless dissipation rate; nu, nE, n~, 
nD, nL, nA, exponents in the self-similar laws; ~E, ~u, wake half-widths; ~ = r/6E, self- 
similar transverse coordinate. 
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